(5) The high specificlty of the binding of methylmercury by the sulfhydryl group forms the basls for its use as a reagent for protein sulfhydryl groups; W. L. Hughes, Jr., Cold Spring Harbor Symp., 14, 79 (1950).
(6) P. G. Simpson, T. E. Hopkins, and R. Hague, J. Phys. Chem., 77, 2282 (1973).
(7) I. Amdur and G. G. Hammes, "Chemical Kinetics"', McGraw-Hill, New York, N.Y., 1966, p 62.
(8) S. Libich and D. L. Rabenstein, Anal. Chem.. 45, 118 (1973).
(9) D. L. Rabenstein, J. Am. Chem. Soc., 95, 2797 (1973).
(10) D. L. Rabenstein, C. A. Evans, M. C. Tourangeau, and M. T. Fairhurst, 47, 338 (1975).
(11) H. M. McConnell, J. Chem. Phys., 28, 430 (1958).
(12) S. Meiboom, J. Chem. Phys., 34, 375 (1961).
(13) R. B. Simpson, J. Chem. Phys.. 46, 4775 (1967).
(14) The fractional concentration of GS - varies from $\sim 10^{-8}$ at pH 1 to 10^{-3} at pH 6.
(15) $k_{-2}=k_{2} k_{123} k_{1}$ where k_{123} is the microscopic acid dissociation con-
stant for the sulfhydryl group ${ }^{9}$ and K_{I} the formation constant. ${ }^{3}$
(16) In the calculation of these rate constants, it was assumed that exchange by reaction 8 is negligible. If, however, the exchange at pH 2.12 is due solely to reaction 8 , the rate constants obtained by the above procedure are $k_{2}=400 \pm 250 \mathrm{sec}^{-1}, k_{-2}=3.4 \times 10^{9} \mathrm{M}^{-1} \mathrm{sec}^{-1}, k_{4}$ $=2.5 \pm 1.5 \times 10^{8} \mathrm{M}^{-1} \mathrm{sec}^{-1}$, and $k_{5}=110 \mathrm{M}^{-1} \mathrm{sec}^{-1}$
(17) R. W. Chen, H. E. Ganther, and W. G. Hoekstra, Biochem. Biophys. Res Commun., 51, 383 (1973).
(18) B. J. Fuhr and D. L. Rabenstein, J. Am. Chem. Soc., 95, 6944 (1973).
(19) Y. S. Wong, P. C. Chieh, and A. J. Carty, Can. J. Chem., 51, 2597 (1973).
(20) D. L. Rabenstein and M. T. Fairhurst, Inorg. Chem., in press.
(21) D. L. Rabenstein, Can. J. Chem., 50, 1036 (1972).
(22) M. Christl and J. D. Roberts. J. Am. Chem. Soc., 94, 4565 (1972).
(23) D. L. Rabenstein, M. T. Fairhurst, and M. S. Greenberg, unpublished results.
(24) M. Eigen, G. Geier, and W. Kruse, Experientia, Suppl., 9, 164 (1964).

Spectral Studies of Copper(II) Carboxypeptidase A and Related Model Complexes

Robert C. Rosenberg, Charles A. Root, Paula K. Bernstein, and Harry B. Gray*
Contribution No. 4923 from the Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125. Received July 18, 1974

Abstract

The near-infrared and visible electronic absorption spectrum of $\mathrm{Cu}^{11} \mathrm{CPA}$ exhibits a maximum at $12,580 \mathrm{~cm}^{-1}$ with a molar extinction coefficient of 124 . Analysis of the frozen glass EPR spectrum of $\mathrm{Cu}^{1 \mathrm{l}} \mathrm{CPA}$ in $1: 1$ ethylene glycol:buffer yields $g_{\|}=2.327, g_{\perp}=2.057, A_{i}=124 \mathrm{G}(13.5), A_{\perp}=15 \mathrm{G}(1.4 \mathrm{mK})$. Comparison of the electronic spectral and EPR properties of $\mathrm{Cu}^{11} \mathrm{CPA}$ with those of model $\mathrm{Cu}(\mathrm{II})$ complexes indicates that the coordination site is significantly distorted from square planar toward a tetrahedral geometry. Addition of the inhibitor sodium β-phenylpropionate ($\mathrm{Na} \beta \mathrm{PP}$) results in a shift of the principal peak in the electronic absorption spectrum to $11,400 \mathrm{~cm}^{-1}$ and an increase in molar extinction coefficient to 180 , suggesting that the coordination geometry in $\mathrm{Cu}^{11} \mathrm{CPA} \cdot \beta \mathrm{PP}$ is closer to tetrahedral than that in the unsubstituted derivative. A formation constant $K_{1}=1.44 \times 10^{2} M^{-1}$ was measured for the $\mathrm{Cu}{ }^{11} \mathrm{CPA} \cdot \beta \mathrm{PP}$ complex.

Carboxypeptidase A (CPA) is a zinc metalloenzyme that exhibits both peptidase and esterase activities. ${ }^{1-3}$ An X-ray crystallographic study ${ }^{4}$ has indicated that the zinc is probably in a distorted tetrahedral coordination environment at the active site of CPA. The probable donor-atom set in the resting enzyme is $\mathrm{N}_{2} \mathrm{O}_{2}$, comprised of the $\mathrm{N}(1)$'s of His 69 and His 196, with oxygens furnished by Glu 72 and a water molecule. ${ }^{4,5}$

Numerous other dipositive metal ions have been substituted for the zinc in CPA with varying degrees of retention of peptidase and esterase activities. ${ }^{6}$ Our electronic spectroscopic and magnetic susceptibility studies of two active derivatives, $\mathrm{Co}^{\mathrm{II}} \mathrm{CPA}$ and $\mathrm{Ni}^{\mathrm{II}} \mathrm{CPA}$, have demonstrated that the enzyme is flexible enough to accommodate both fiveand six-coordinate active-site structures. ${ }^{7}$ It appears, then, that as long as the metal center possesses a properly oriented, substitution-labile coordination position, a range of coordination numbers and geometries is possible for a pep-tidase-active derivative. In order to further examine the question of coordinative flexibility in the CPA system and the relationship of the coordination environment of the metal to enzymatic activity, study of an inactive metalloderivative appeared essential.

The $\mathrm{Cu}{ }^{11}$ CPA derivative is known to show neither peptidase nor esterase activity. ${ }^{\text {a }}$ Only sketchy information regarding its spectroscopic properties is available in the literature. The wavelength of maximum absorption of $\mathrm{Cu}^{11} \mathrm{CPA}$ has been mentioned, ${ }^{8}$ but no details on the rest of the absorption spectrum appear to be available. A brief report stating that the EPR spectrum of a single crystal of $\mathrm{Cu}^{11} \mathrm{C}$ PA shows three principal g values and superhyperfine interaction from two equivalent nitrogen ligands has been pub-
lished, ${ }^{9}$ although no g values or hyperfine coupling constants were given. The only other EPR data for $\mathrm{Cu}^{11} \mathrm{CPA}$ are from a study of freeze-dried samples and pH 5.5 solutions. ${ }^{10}$

In this paper we report the results of our investigation of the electronic absorption and EPR spectra of $\mathrm{Cu}^{\text {II }} \mathrm{CPA}$. The spectroscopic data for $\mathrm{Cu}^{\mathrm{II}} \mathrm{CPA}$ are compared with those obtained for a variety of cupric model complexes, with the aim of elucidating the coordination number and geometry of the metal center. We also report the electronic absorption spectrum and the formation constant of the complex of $\mathrm{Cu}^{1 \mathrm{I}} \mathrm{CPA}$ with the inhibitor β-phenylpropionate ($\beta \mathrm{PP}$).

Experimental Section

Materials. Crystaliine carboxypeptidase A, isolated by the Cox procedure, " was obtained from Sigma Chemical Co. and used without further purification. The Cox method was chosen because it yields a relatively small amount of the undesirable CPA $_{\gamma}$ form of the enzyme. ${ }^{12}$ Samples were checked for peptidase activity ${ }^{13}$ and metal content before and after metal replacement. Hippuryl-Lphenylalanine (Schwarz/Mann) was used as the substrate in all assays. $\mathrm{Cu}^{11} \mathrm{CPA}$ was prepared by the method of Coleman and Vallee. ${ }^{14}$ Peptidase activity was found to be proportional to the zinc content of preparations containing mixtures of $\mathrm{Zn}^{11} \mathrm{CPA}$ and $\mathrm{Cu}^{11} \mathrm{CPA}$. The preparations of $\mathrm{Cu}^{11} \mathrm{CPA}$ used for the spectral studies were found to contain $1-3 \mathrm{~mol} \%$ residual zinc and had a correspondingly low level activity. Extreme care was taken to prevent contamination of the CPA by adventitious metal ions. ${ }^{15}$ Plastic lab ware was used, and all the Tris- HCl buffers were repeatedly extracted with dithizone in CCl_{4} prior to use. Cupric ion solutions were made up by dissolving the pure metal in metal-free HCl . Minimum 99.9% pure Cu metal (J. T. Baker Co.) was used. $\mathrm{D}_{2} \mathrm{O}$ was obtained from Columbia Organic Chemical Co. The $\mathrm{D}_{2} \mathrm{O}$

Figure 1. Absorption spectra of $\mathrm{Cu}^{11} \mathrm{CPA}$ in deuterated 1 M NaCl , $0.05 M$ (pH 7.8) Tris buffer $\left(7-12^{\circ}\right):(-)\left[\mathrm{Cu}^{2+}\right]=4.66 \times 10^{-4} \mathrm{M}$; $(\ldots-)\left[\mathrm{Cu}^{2+}\right]=4.25 \times 10^{-4} .[\mathrm{Na} \beta \mathrm{PP}]=6.93 \times 10^{-3} \mathrm{M}$.
buffer was passed through a Chelex-100 column before use in the spectral experiments. Deuterated apoCPA was obtained by dialyzing apoCPA against a minimum of five changes of deuterated buffer. Sodium β-phenylpropionate ($\mathrm{Na} \beta \mathbf{P P}$) was prepared by neutralizing an alcoholic solution of hydrocinnamic acid (Eastern Chemical Co.) with sodium hydroxide. Samples of $\mathrm{Na} \beta \mathrm{PP}$ were recrystallized from ethanol-hexane. The N-alkyl(aryl)salicylideneaminatocopper(II) complexes [abbreviated $\mathrm{Cu}(\mathrm{N}-\mathrm{R}-\mathrm{Sal})_{2}$] were prepared by literature procedures ${ }^{16}$ and recrystallized from chloroform-ethanol solution. Melting points agreed well with the published values.

Spectra. Near-infrared and visible absorption spectra were measured on a Cary 17I recording spectrometer which had been modified to run at constant slit width. This modification considerably reduces observed baseline variation on the $0.0-0.1$ O.D. slidewire. A difference technique, which has been previously described, ${ }^{7}$ was used to measure the spectra of $\mathrm{Cu}^{11} \mathrm{CPA}$ and its complex with β phenylpropionate. Matched cells with a path length of 50 mm holding 1.95 ml of solution were obtained from Helma Cell, Inc. Spectra were measured between 7 and 12° in deuterated 1 M $\mathrm{NaCl}, 0.05 \mathrm{M}(\mathrm{pH} 7.8)$ Tris-HCl buffer. Corrections for dilution were applied to the spectral data. Enzyme concentrations were measured spectrophotometrically at $278 \mathrm{~nm} .^{13}$

The low temperature X-band EPR spectrum of $\mathrm{Cu}{ }^{11} \mathrm{CPA}$ in a 1:I buffer:ethylene glycol glass was measured on a Varian V4502 spectrometer equipped with a $9-\mathrm{in}$. Varian electromagnet and a Fieldial fieldsweep control unit, and 100 kHz modulation was used. The magnetic field was calibrated in every experiment with a sample of solid DPPH placed in the rear compartment of the dual cavity. The DPPH signal was detected using a low frequency $(20-400 \mathrm{~Hz})$ modulation and detection system. The microwave frequency was measured by a wave meter attached to the microwave bridge. Low temperature measurements were made by passing a stream of nitrogen gas through a liquid helium heat exchanger and then through a quartz dewar containing the sample. A Varian V4540 temperaturè controller was used to monitor the gas flow. The computer simulation of the EPR spectrum of $\mathrm{Cu}^{11} \mathrm{CPA}$ was performed as described previously. ${ }^{17}$

The X-band, frozen-glass EPR spectra of the $\mathrm{Cu}(\mathrm{N} \text {-R-Sal })_{2}$ complexes were measured on a Varian V-4502 EPR spectrometer equipped with a $12-\mathrm{in}$. Varian electromagnet and a Varian Mark Il Fieldial field sweep control unit. A Varian V4532 rectangular cavity fitted with a quartz liquid nitrogen dewar was used. The magnetic field was calibrated with a solid sample of DPPH and the microwave frequency was measured by a wave meter attached to the microwave bridge. Spectra at low temperature $\left(77^{\circ} \mathrm{K}\right)$ were obtained by immersing a $1: 1$ toluene-methylcyclohexane solution of the sample in liquid nitrogen. The parallel region of each of the spectra was analyzed according to eq 1 . As $\left|A_{\perp}\right|$ is usually about

$$
H\left(0, M_{1}\right)=H_{11}{ }^{0}-\left|A_{n}\right| M_{\mathrm{I}} \quad\left(M_{\mathrm{I}}=3 / 2,1 / 2,-1 / 2,-3 / 2\right)(1)
$$

an order of magnitude smaller than $\left|A_{i}\right|$ in most monomeric copper(II) complexes, the second-order contribution to the spectrum

Figure 2. Plots of $E I /\left(A_{\lambda}-p E \epsilon_{\mathrm{Cu}}{ }^{\text {llCPA }}\right) ~ v s . ~ E+I$ for the reaction of $\mathrm{Cu}^{11} \mathrm{CPA}$ with $\mathrm{Na} \beta \mathrm{PP}$ in deuterated $1 M \mathrm{NaCl}, 0.05 M$ (pH 7.8) Tris buffer (7-12 ${ }^{\circ}$).

Figure 3. Observed ($85^{\circ} \mathrm{K}, 1: 1$ buffer-ethylene glycol glass) and simulated EPR spectra of $\mathrm{Cu}^{11} \mathrm{CPA}$.
in the parallel region was neglected. The uncertainty of the $\mid A \|$ values so determined is estimated to be $\pm 0.4 \mathrm{mK}$.

Metal Analyses. Metal analyses were done by atomic absorption spectroscopy using a Varian Techtron Model AA-5 unit equipped with a Jarrell-Ash Model 82-000 monochromater and Varian Techtron element specific, hollow cathode lamps. Copper(II) and zinc(II) standards containing the metal ions in Tris- $\mathrm{HCl}-\mathrm{NaCl}$ buffer were made up from 1000 ppm standard solutions obtained from Varian Techtron.

Results

The electronic absorption spectrum of $\mathrm{Cu}^{\text {II }} \mathrm{CPA}$ in $\mathrm{D}_{2} \mathrm{O}$ buffer is shown in Figure 1. The principal absorption maximum occurs at $795 \mathrm{~nm}\left(12,580 \mathrm{~cm}^{-1}\right)$ and has a molar extinction coefficient, ϵ_{m}, of 124 , in substantial agreement with the values mentioned by Vallee. ${ }^{8}$ There is also a distinct shoulder on the low energy side of the absorption envelope in the region of $920 \mathrm{~nm}\left(10,800 \mathrm{~cm}^{-1}\right)$. Upon addition of a 16 -fold excess of the inhibitor β-phenylpropionate, the band maximum shifts to lower energy and the molar extinction coefficient increases (Figure 1). The low energy shoulder also becomes more pronounced. Using the procedure of Furman and Garner, ${ }^{18}$ the formation constant K_{I} of $\mathrm{Cu}^{\text {II }} \mathrm{CPA} \cdot \beta$ PP was found to be $(1.44 \pm 0.24) \times 10^{2}$. Representative plots of $E I /\left(A_{\lambda}-p E \epsilon_{\mathrm{CuCPA}}\right)$ vs. $E+I$ are shown in Figure 2 (E and I are the total enzyme and inhibitor concentrations, respectively, A_{λ} is the observed absorbance at wavelength λ, and p is the path length of the cell in centimeters). The data also indicate that an isosbestic point occurs somewhere between 750 and 770 nm , suggesting that only two species are involved in the equilibrium. Calculation of the spectrum of the $\mathrm{Cu}^{\mathrm{II}} \mathrm{CPA} \cdot \beta \mathrm{PP}$ complex by a standard procedure ${ }^{18}$ yields an absorption maximum at about $875 \mathrm{~nm}\left(11,400 \mathrm{~cm}^{-1}\right)$, with $\epsilon_{\mathrm{m}} \sim 180$.

Experimental and the best computer simulated EPR spectra of a frozen sample of $\mathrm{Cu}^{\text {II }} \mathrm{CPA}$ are shown in Figure 3. In the simulation, different line widths (Δ) were used in

Table I. Structural and Electronic Spectral Data for Copper(II) Complexes

	Donor set	Structurea ${ }^{(\theta)}$	$v_{\text {max }}\left(\mathrm{cm}^{-1}\right)$	$\epsilon_{\text {m }}$
$\mathrm{Na}_{4} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}, \mathrm{H}_{2} \mathrm{O}^{\text {b }}$	N_{4}	PI	19,200	
$\mathrm{Na}_{4} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right\} \mathrm{NH}_{3}{ }^{\text {b }}$	N_{5}	SPy	17,700	
$\left[\mathrm{Cu}(\mathrm{en})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}{ }^{\text {c }}$	N_{4}	PJ.	19,400	
$\left[\mathrm{Cu}(\mathrm{en})_{2} \mathrm{NH}_{3}\right]\left(\mathrm{BF}_{4}\right)_{2}{ }^{\text {d }}$	N_{5}	SPy	17,400	
$\mathrm{Cu}(\mathrm{H}(\mathrm{pa}))_{2}{ }^{e}$	N_{4}	Pl	19,600	~ 75
$\mathrm{Cu}(n-\mathrm{Bu}(\mathrm{pa}))_{2}{ }^{\text {f }}$	N_{4}		18,940	
$\mathrm{Cu}(i-\operatorname{Pr}(\mathrm{pa}))_{2}{ }^{\text {d }}$	N_{4}		18,600	~ 110
$\mathrm{Cu}(t-\mathrm{Bu}(\mathrm{pa}))_{2}{ }_{1}, \mathrm{~g}$	N_{4}	$\mathrm{P}-\mathrm{T}\left(60^{\circ}\right)$	15,000	~ 160
$\mathrm{Cu}(\mathrm{HPhHMe})_{2}{ }^{\text {h }}$	$\mathrm{N}_{2} \mathrm{O}_{2}$	Pl	17,500	~ 75
$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{PhHMe}\right)_{2}{ }^{h}$	$\mathrm{N}_{2} \mathrm{O}_{2}$		16,000	~ 95
$\mathrm{Cu}(i-\mathrm{PrPhHMe})_{2}{ }^{2}$	$\mathrm{N}_{2} \mathrm{O}_{2}$		13,800	~ 110
$\mathrm{Cu}(\mathrm{N}-n-\mathrm{PrSal}){ }_{2}{ }^{i}$	$\mathrm{N}_{2} \mathrm{O}_{2}$	Pl^{j}	16,600	~ 30
$\mathrm{Cu}(\mathrm{N}-n-\mathrm{BuSal})_{2} i$	$\mathrm{N}_{2} \mathrm{O}_{2}$	Pl^{j}	15,750	~ 25
$\mathrm{Cu}(\mathrm{N} i-\mathrm{PrSal})_{2}{ }^{i}$	$\mathrm{N}_{2} \mathrm{O}_{2}$	P-T $\left(60^{\circ}\right)^{k}$	14,700	~ 40
$\mathrm{Cu}(\mathrm{N}-\mathrm{PhSal})_{2}{ }^{i}$	$\mathrm{N}_{2} \mathrm{O}_{2}$	$\mathrm{Pl}^{\text {l }}$	14,100	~ 45
$\mathrm{Cu}(\mathrm{N}-t-\mathrm{BuSal})_{2}$	$\mathrm{N}_{2} \mathrm{O}_{2}$	P-T ($\left.54^{\circ}\right)^{m}$	$\begin{aligned} & 12,900^{i} \\ & 12,70^{n} \end{aligned}$	$\underset{\sim}{\sim} \sim 110^{i}$
$\mathrm{Cu}(o-\mathrm{phen}) \mathrm{Cl}_{2}{ }^{\circ}$	$\mathrm{N}_{2} \mathrm{Cl}_{2}$	P-T (79 ${ }^{\circ}$)	13,800	
$\left[\left(n-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4} \mathrm{~N}\right] \mathrm{Cu}(\text { cat })_{2} p$	O_{4}	Pl	$\sim 15,000$	
$\mathrm{Cu}(\mathrm{facfac})_{2} q, r$		Pl	13,500	~ 40
$\mathrm{CuII} \mathrm{CPA}^{s}$	$\mathrm{N}_{2} \mathrm{O}_{2}$?	P-T?	12,580	124
$\mathrm{Cu}^{\text {II }} \mathrm{CPA} \cdot \beta \mathrm{PP}{ }^{s}$ $\mathrm{CuII}^{\mathrm{II}}{ }^{t}$	$\mathrm{N}_{2} \mathrm{O}_{2}$? N_{2} ?	P-T? P-T?	11,400 13,900	180
CuIICA^{t}	$\mathrm{N}_{3} \mathrm{O}$?	P-T?	13,900	110

${ }^{a}$ Abbreviations: $\mathrm{Pl}=$ planar; $\mathrm{P}-\mathrm{T}=$ pseudo tetrahedral; $\mathrm{SPy}=$ square pyramidal. b B. J. Hathaway and F. Stephens, J. Chem. Soc. A, 884 (1970), c I. M. Procter, B. J. Hathaway, and P. Nicholls, ibid., 1678 (1968), d A. G. Tomlinson and B. J. Hathaway, ibid., 1685 (1968). e A. Chakravorty and T. S. Kannan, J. Inorg. Nucl. Chem., 29, 1691 (1967); pa = pyrrole-2-aldimino.fR. H. Holm, A. Chakravorty, and L. J. Theriot, Inorg. Chem., 5, 625 (1966).g R. H. Holm and M. J. O'Connor, Prog. Inorg. Chem., 14, 325 (1971). h D. H. Gerlach and R. H. Holm, Inorg. Chem., 9, 589 (1970); R-PhHMe $=\mathrm{N}$-R-phenylmethyl- β-ketimine. ${ }^{i}$ This work; spectrum in toluene at 25°. $j \mathrm{G}$. Bombieri, C. Panattoni, E. Fursellini, and R. Graziani, Acta Crystallogr., Sect. B, 25, 1208 (1969). k P. L. Orioli and L. Sacconi, J. Am. Chem. Soc., 88, 277 (1966). ${ }^{l}$ L. Wei, R. M. Stogsdill, and E. C. Lingafelter, Acta Crystallogr, 17, 1058 (1964). m T. P. Cheesman, D. Hall, and T. N. Waters, J. Chem. Soc. A, 685 (1966). ${ }^{n}$ This work, spectrum in 1,1,2,2-tetrachloroethane solution at $25^{\circ} .0$ G. F. Kokoszka, G. W. Reimann, and H. C. Allen, Jr., J. Chem. Phys., 71, 121 (1967). P F. Röhrscheid, A. L. Balch, and R. H. Holm, Inorg. Chem., 5, 1545 (1966). q J. P. Fackler, Jr., F. A. Cotton, and D. W. Barnum, Inorg. Chem., 2, 97 (1963). r J. A. Bertrand and R. I. Kaplan, Inorg. Chem., 5, 489 (1966). s This work; spectrum in $\mathrm{D}_{2} \mathrm{O}$ buffer ($7-12^{\circ}$). ${ }^{t}$ S. Lindskog and P. O. Nyman, Biochim. Biophys. Acta, 85, 462 (1964).
the parallel and perpendicular regions. Although the values $\left|A_{\perp}\right|=15$ and $\Delta_{\perp}=25 \mathrm{G}$ provide an excellent fit in the perpendicular region, equally good agreement with experiment can be obtained by assuming a slightly larger line width and a smaller hyperfine splitting or vice versa ($\Delta_{\perp}=$ $25 \pm 3:\left|A_{\perp}\right|=15 \pm 3 \mathrm{G}$). The perpendicular region is further complicated by the presence of an angular anomaly ${ }^{17}$ at $\theta=79^{\circ}$. As there is large absorption due to the angular anomaly so close to $\theta=90^{\circ}$, we cannot rule out the possibility of a small rhombic distortion. That such a distortion may be present was noted in a preliminary report of a sin-gle-crystal EPR study of $\mathrm{Cu}^{11} \mathrm{CPA}$, where three principal g values were observed. ${ }^{9}$

The values $\left(g_{\mid}=2.327 ;|A|=124 \mathrm{G}(13.5 \mathrm{mK})\right)$ we find for the parallel components of the g and A tensors for $\mathrm{Cu}^{11} \mathrm{CPA}$ differ significantly from those ($g_{\|}=2.24 ;\left|\mathcal{A}_{\|}\right|=$ $182 \mathrm{G}(19.0 \mathrm{mK})$) reported earlier by Malmström and Vänngård. ${ }^{10}$ The probable reason for the discrepancy lies in the fact that the latter parameters were measured on samples that were freeze-dried or were in solution at pH 5.5 . Freeze-drying reduces the specific activity of native CPA by more than $50 \%,{ }^{19}$ whereas dialysis of the protein against pH 5.0 buffer has been employed as a means of preparation of apoCPA. ${ }^{3}$ Thus it is reasonable to conclude that Malmström and Vänngård observed the EPR signal of cupric ion that either was bound nonspecifically to the protein or was complexed by solvent molecules. In this regard, we note that we have found $g_{\|}^{\prime}=2.24$ and $\left|\mathcal{A}_{i}\right|=185 \mathrm{G}(19.3 \mathrm{mK})$ for Cu (II) in 1:1 Tris buffer-ethylene glycol at $77^{\circ} \mathrm{K}$, in very close agreement with the parameter values reported previously for $\mathrm{Cu}^{\text {II }} \mathrm{CPA} .{ }^{10}$

Electronic absorption spectral data for an extensive selection of copper(II) model complexes containing $\mathrm{N}_{x} \mathrm{O}_{y}$ donor atom sets are summarized in Table I. The series of $\mathrm{Cu}(\mathrm{N}-$ $\mathrm{R}-\mathrm{Sal})_{2}$ complexes is of particular interest, as direct structural information on each member is available. X-Ray structural studies have shown that the distortion from planarity in these $\mathrm{Cu}^{I I} \mathrm{~N}_{2} \mathrm{O}_{2}$ systems, as measured by the angle (θ) between the two CuNO planes, is determined by the bulkiness of the imine side chain. ${ }^{20-24}$ The complexes which are significantly distorted ($\theta \geq 50^{\circ}$) will be referred to as having a "pseudo tetrahedral" geometry. Electronic spectra of the pseudo-tetrahedral complex $\mathrm{Cu}(\mathrm{N}-t-\mathrm{BuSal})_{2}$ in toluene and 1,1,2,2-tetrachloroethane solutions are compared in Figure 4.

EPR spectra of the $\mathrm{Cu}(\mathrm{N}-\mathrm{R}-\mathrm{Sal})_{2}$ complexes in frozen toluene-methylcyclohexane solutions ($77^{\circ} \mathrm{K}$) are axial in nature and exhibit well-resolved parallel regions. It is apparent from an inspection of Table II that the value of $\left|A_{\|}\right|$ decreases with increasing distortion toward tetrahedral geometry. Both the pseudo-tetrahedral complex $\mathrm{Cu}(\mathrm{N}-t$ $\mathrm{BuSal})_{2}$ and the Cu^{2+}-doped sample of $\mathrm{Zn}(o$-phen $) \mathrm{Cl}_{2}{ }^{25}$ exhibit relatively small $\mid \mathcal{A} \|$ values, for example. The significant decrease in $\left|A_{\|}\right|$on changing from toluene to $1,1,2,2-$ tetrachloroethane solution indicates that $\mathrm{Cu}(\mathrm{N}-t-\mathrm{BuSal})_{2}$ is more severely distorted toward tetrahedral geometry in the latter medium.

Discussion

It has been shown that the relative magnitudes of the g values for copper(II) complexes can be used to distinguish certain types of coordination environments. ${ }^{26}$ For example,

Table II. EPR Data for Copper(II) Complexes

Complex	θ, deg	$g_{\\|}$	$\left\|A_{\\|}\right\|, \mathrm{mK}$
Cu^{2+} in $\mathrm{Ni}(\mathrm{Sal})_{2}{ }^{a}$	0	2.20	18.5
$\mathrm{Cu}(\mathrm{N}-n-\mathrm{PrSal})_{2}$	$0{ }^{\text {b }}$	2.23	$18.6{ }^{\text {c }}$
$\mathrm{Cu}(\mathrm{N}-n-\mathrm{BuSal})_{2}$	$0^{\text {b }}$	2.23	$18.3{ }^{\text {c }}$
$\mathrm{Cu}(\mathrm{N}-\mathrm{PhSal})_{2}$	$0^{\text {d }}$	2.23	$17.2{ }^{\text {c }}$
$\mathrm{Cu}(\mathrm{N}-\mathrm{biPh} / 2-\mathrm{Sal})_{2}$	$37 e$	2.24	$17.6{ }^{\text {c }}$
$\mathrm{Cu}(\mathrm{N}-i-\mathrm{PrSal})_{2}$	$60 f$	2.25	$16.4{ }^{c}$
$\mathrm{Cu}(\mathrm{N}-\mathrm{t} \text { - } \mathrm{BuSal})_{2}$	54 g	2.28	$14.7{ }^{c}$
		2.27	11.9 ${ }^{\text {h }}$
Cu^{2+} in $\mathrm{Zn}(\mathrm{N}-i-\mathrm{PrSal})_{2}$	$>70^{i}$	2.29	$12.5 j$
Cu^{2+} in $\mathrm{Zn}\left(\mathrm{N}-\mathrm{t}\right.$-BuSal) ${ }_{2}$	$>70^{i}$	2.29	12.5 k
Cu^{2+} in $\mathrm{Zn}(0$-phen $) \mathrm{Cl}_{2}{ }^{l}$	79	2.30	12.3
$\mathrm{CuIl} \mathrm{CPA}^{m}$		2.327	13.5
$\mathrm{CuII}^{\text {Ca }}{ }^{\text {n }}$		2.314	13.3

${ }^{a}$ A. H. Maki and B. R. McGarvey, J. Chem. Phys., 29, 35 (1958).
${ }^{b}$ G. Bombieri, C. Panattoni, E. Fursellini, and R. Graziani, Acta Crystallogr., Sect. B, 25, 1208 (1969). ${ }^{c}$ This work; spectrum measured in 1:1 methylcyclohexane-toluene frozen glass ($77^{\circ} \mathrm{K}$). ${ }^{d} \mathrm{~L}$. Wei, R. M. Strogsdill, and E. C. Lingafelter, Acta Crystallogr., 17, 1058 (1964). ${ }^{e}$ T. P. Cheesman, D. Hall, and T. N. Waters, Proc. Chem. Soc., London, 379 (1963). fP. L. Orioli and L. Sacconi, J. Am. Chem. Soc., 88, 277 (1966). g T. P. Cheesman, D. Hall, and T. N. Waters, J. Chem. Soc. A, 685 (1966). h Y. Nonaka, T. Tokii, and S. Kida, Bull. Chem. Soc. Jpn., 47, 312 (1974); spectrum measured in 1, 1,2,2-tetrachloroethane ($137^{\circ} \mathrm{K}$), ${ }^{i} \mathrm{E}$. Frasson and C . Panattoni, Z. Kristallogr. Kristallgeom., Kristallphys., Kristallchem., 116, 154 (1961). ${ }^{j} \mathrm{H} . \mathrm{P}$. Fritz, B. M. Golla, and H. Keller, Z. Naturforsch., Teil B, 21, 1015 (1960). ${ }^{k}$ ibid., 23, 876 (1968). ${ }^{l}$ G. F.
Kokoszka, C. W. Reimann, and H. C. Allen, Jr., J. Phys. Chem., 71, 121 (1967). m This work; spectrum measured in $1: 1$ buffer-ethylene glycol frozen glass ($85^{\circ} \mathrm{K}$). $n^{n} \mathrm{~S}$. Lindskog and P. O. Nyman, Biochim. Biophys. Acta, 85, 462 (1964).
tetragonal distortion from octahedral symmetry may occur either by axial elongation or compression. In the former case, $g_{\|}>g_{\perp}>2.00$, whereas $g_{\perp}>g_{\| \mid}>2.00$ for the latter. According to theory, the g value pattern for axial compression should be exactly the same as that for trigonal bipyramidal coordination. Thus on the basis of the g values alone, both trigonal bipyramidal and axially compressed tetragonal coordination can be eliminated as possibilities for $\mathrm{Cu}^{11} \mathrm{CPA}$.

An undistorted square planar coordination geometry is also highly unlikely for $\mathrm{Cu}^{\text {II }} \mathrm{CPA}$. The near-infrared and visible absorption spectra of square planar Cu (II) complexes containing $\mathrm{N}_{x} \mathrm{O}_{y}$ donor-atom sets all have principal $d-d$ bands in the region $14,000-20,000 \mathrm{~cm}^{-1}$ (Table I). The main d-d band in $\mathrm{Cu}^{\text {II }}$ CPA peaks well below the lower limit of this range. It may be noted at this point that the position ($13,900 \mathrm{~cm}^{-1}$) of the principal d-d band in the Cu (II) derivative of carbonic anhydrase (CA) is also too low to be consistent with square planar coordination involving a probable $\mathrm{N}_{3} \mathrm{O}^{27}$ donor set.

Examination of the absorption spectral data for the various $\mathrm{Cu}(\mathrm{II})$ model complexes set out in Table I reveals two alternative explanations for the relatively low energy, moderately intense $\mathrm{d}-\mathrm{d}$ maximum in $\mathrm{Cu}^{\text {II }} \mathrm{CPA}$. Addition of axial ligands to square planar $\mathrm{Cu}(\mathrm{II})$, giving first a square pyramidal and then an elongated tetragonal structure, shifts the main absorption band to lower energy. The shift to lower energy is accompanied by an intensity increase, and is sometimes called the "pentaammine effect". This effect was first observed ${ }^{28}$ on further addition of ammonia to a solution containing $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{2+}$ and can be considered to occur generally when a stronger field ligand replaces a weaker field one in an axial position. However, EPR results rule against a pentaammine-like structural situation in $\mathrm{Cu}^{\mathrm{II}} \mathrm{CPA}_{4}$ as its $\mid \boldsymbol{A} \|$ of 13.5 mK falls below the range of $15-20 \mathrm{mK}$ observed for tetragonal $\mathrm{Cu}(\mathrm{II})$ in protein type II sites and in a variety of low molecular weight

Figure 4. Absorption spectra of $\mathrm{Cu}(\mathrm{N}-t-\mathrm{BuSal})_{2}$ at 25° : (-) in 1,1,2,2-tetrachloroethane; (---) in toluene.
model species. ${ }^{29}$
Red shifts and intensity enhancements of $d-d$ electronic absorption bands also accompany changes from square planar toward tetrahedral geometry. Thus a very attractive structural model for $\mathrm{Cu}^{\mathrm{II}} \mathrm{CPA}$ is the pseudo-tetrahedral complex $\mathrm{Cu}(\mathrm{N}-t \text {-BuSal })_{2}$, whose electronic absorption spectrum in 1,1,2,2-tetrachloroethane exhibits a principal maximum at $785 \mathrm{~nm}\left(12,740 \mathrm{~cm}^{-1}\right)$ with an ϵ_{m} of 115 (Figure 4). The spectrum also reveals a prominent low-energy shoulder ($950 \mathrm{~nm} ; 10,500 \mathrm{~cm}^{-1}$). The positions and intensities of both the maximum and the shoulder strikingly resemble the electronic spectral features observed for $\mathrm{Cu}^{\mathrm{II}} \mathrm{C}$ PA and $\mathrm{Cu}^{\text {lI }} \mathrm{CPA} \cdot \beta$ PP (Figure 1). Furthermore, both the $g_{\|}$ and $\left|A_{\|}\right|$values of $\mathrm{Cu}{ }^{11} \mathrm{CPA}$ are in reasonable agreement with those found for certain of the pseudo-tetrahedral $\mathrm{Cu}(\mathrm{II})$ complexes (Table II). Again, the data for $\mathrm{Cu}(\mathrm{N}-t-$ $\mathrm{BuSal})_{2}$ are in particularly close accord with the $\mathrm{Cu}^{\mathrm{II}} \mathrm{CPA}$ results. The weight of the available evidence, then, points clearly to a pseudo-tetrahedral geometry for Cu (II) coordination in CPA. A similar conclusion concerning structural assignment may be reached for $\mathrm{Cu}^{\mathrm{II}} \mathrm{CA}$.

It must be emphasized that the $\mid A_{\|} \|$for $\mathrm{Cu}^{\mathrm{II}} \mathrm{CPA}$ is still greater than typical values ($3-10 \mathrm{mK}$ range) for type I Cu (II) proteins. ${ }^{29}$ A distorted tetrahedral coordination geometry is also a prime candidate for type I $\mathrm{Cu}(\mathrm{II}),{ }^{30}$ but the situation is probably not strictly comparable because of the likelihood of Cys-S binding to Cu (II) in the "blue" proteins. ${ }^{30}$

The substantial increase in the intensity of the main $d-d$ absorption band in the $\mathrm{Cu}^{1 I} \mathrm{CPA} \cdot \beta$ PP complex over $\mathrm{Cu}^{\mathrm{II}} \mathrm{C}$ PA cannot be explained by ligand exchange (e.g., substitution of carboxylate for water) alone. Such exchange would be expected to produce a red shift, as carboxylate is below water in the spectrochemical series, but little or no intensity enhancement. It is probable, therefore, that ligand substitution is accompanied by a small conformational change that produces a more tetrahedral-like environment. Such a conformational change could be caused by interaction of the aromatic part of the inhibitor with groups in the enzyme. Structural changes associated with $\beta \mathrm{PP}^{-}$binding to $\mathrm{Ni}^{\mathrm{II}} \mathrm{C}$ PA have also been postulated, based on spectroscopic results. ${ }^{7}$

Formation constants for reaction of β-phenylpropionate with several $\mathrm{M}^{1 \mathrm{Cl}} \mathrm{CPA}$ derivatives are summarized in Table III. It is striking that K_{1} for the one inactive derivative, $\mathrm{Cu}^{\mathrm{II}} \mathrm{CPA}$, fails well over an order of magnitude below the rather narrow range measured for the active enzymes. Clearly, the presence of cupric ion significantly alters the

Table III. Binding Constants of β-Phenylpropionate to $\mathrm{M}^{\mathrm{II}} \mathrm{CPA}$ Derivatives

MIICPA	$K_{I}\left(10^{4} M^{-1}\right)$
$\mathrm{Mn}(\mathrm{II})^{a}$	0.28
$\mathrm{Co}(\mathrm{II})^{b}$	>0.5
$\mathrm{Ni}(\mathrm{II})^{c}$	0.37
$\left.\mathrm{Cu}^{d} \mathrm{II}\right)^{d}$	0.014
$\mathrm{Zn}(\mathrm{II})^{e}$	0.53

a G. Navon, R. G. Shulman, B. J. Wyluda, and T. Yamane, J. Mol. Biol., 51, 15 (1970). b J. E. Coleman and B. L. Vallee, Biochemistry, 3, 1874 (1964). c R. C. Rosenberg, C. A. Root, and H. B. Gray, J. Am. Chem. Soc., 97, 21 (1975). a This work. ${ }^{e}$ D. S. Auld and B. L. Vallee, Biochemistry, 9, 602 (1970).
inhibitor binding site. Such alteration could mean that certain of the mechanistically important protein side chains have been shifted from their optimal positions. This suggestion derives some support from the low resolution X-ray work on the Gly-L-Tyr complex of $\mathrm{Cu}^{\text {Il }} \mathrm{CPA}$, as in this case the conformational change of Glu 270 associated with substrate binding in the native enzyme is not observed. ${ }^{4,31}$

Acknowledgments. We would like to thank Dr. George R. Rossman for making a Cary 17I spectrophotometer available to us and Dr. F.-D. Tsay for invaluable help in the analysis of the EPR data. This research was supported by the National Science Foundation. C.A.R. acknowledges a sabbatical leave from Bucknell University and partial support from a National Science Foundation Faculty Fellowship.

References and Notes

(1) B. L. Vallee and H. Neurath, J. Am. Chem. Soc., 76, 5006 (1954).
(2) J. E. Snoke, G. W. Schwert, and H. Neurath, J. Biol. Chem., 175, 7 (1948).
(3) B. L. Vallee, J. A. Rupley, J. A. Coombs, and H. Neurath, J. Am. Chem. Soc., 80, 4750 (1958).
(4) (a) T. A. Steitz, M. L. Ludwig, F. A. Quiocho, and W. N. Lipscomb, J. Biol. Chem., 242, 4662 (1967); (b) W. N. Lipscomb, J. A. Hartsuck, G. N. Reeke, Jr., F. A. Quiocho, P. H. Bethge, M. L. Ludwig, T. A. Steitz, H.

Mulrhead, and J. C. Coppola, Brookhaven Symp. Biol., 21, 24 (1968); (c) W. N. Lipscomb, G. N. Reeke, Jr., J. A. Hartsuck, F. A. Qulocho, and P. H. Bethye, Philos. Trans. R. Soc. London, Ser. B, 257, 177 (1970).
(5) R. A. Bradshaw, L. H. Erlcsson, K. A. Walsh, and H. Neurath, Proc. Nat Acad. Scl. U.S.A., 63, 1389 (1969).
(6) (a) J. E. Coleman and B. L. Vallee, J. Biol. Chem., 236, 244 (1961): (b) R. C. Davies, J. F. Riordan, D. S. Auld, and B. L. Vallee, Blochemistry, 7, 1090 (1968); (c) D. S. Auld and B. L. Vallee, ibid., 9, 602 (1970); (d) R. J. DeKoch, D. J. West, J. C. Cannon, and N. D. Chasteen, ibid., 13, 4347 (1974).
(7) R. C. Rosenberg, C. A. Root, and H. B. Gray, J. Am. Chem. Soc., 97, 21 (1975).
(8) B. L. Vallee and W. C. Wacker in "The Proteins", Vol. V. H. Neurath, Ed., Academic Press, New York, N. Y., 1970, p 99.
(9) A. S. Brill, P. R. Kirkpatrick, C. P. Scholes, and J. H. Venable in 'Probes of Structure and Function of Macromolecules and Membranes'", Vol. I, B. Chance, C. Lee, and J. K. Blastic, Ed., Academic Press, New York, N.Y., 1971.
(10) B. G. Malmstróm and T. Vanngârd, J. Mol. Biol, 2, 118 (1960).
(11) D. J. Cox, F. C. Bovard, J. P. Bargetzi, K. A. Walsh, and H. Neurath, Biochemistry, 3, 44 (1964).
(12) P. H. Petra and H. Neurath, Biochemistry, 8, 5029 (1969).
(13) P. H. Petra, Methods Enzymol., 19, 460 (1970), and references therein.
(14) J. E. Coleman and B. L. Vallee, J. Biol. Chem., 235, 390 (1960).
(15) R. E. Thiers in '"Methods of Biochemical Analysis'', Vol. V, D. Glick, Ed., Interscience, New York, N.Y., 1955, pp 273-335.
(16) L. Sacconi and M. Ciampolini, J. Chem. Soc., 276 (1964).
(17) F.-D. Tsay, H. B. Gray, and J. Danon, J. Chem. Phys., 54, 3760 (1971)
(17) F.-D. Tsay, H. B. Gray, and J. Danon, J. Chem. Phys., 34,3528 (1951).
(19) R. C. Rosenberg and C. A. Root, unpublished observations.
(20) G. Bombieri, C. Panattoni, E. Fursellini, and R. Graziani, Acta Crystat logr., Sect. B, 25, 1208 (1969).
(21) L. Wei, R. M. Strogsdill, and E. C. Lingafetter, Acta Crystallogr., 17, 1058 (1964).
(22) T. P. Cheesman, D. Hall, and T. N. Waters, Proc. Chem. Soc., London, 379 (1963).
(23) P. L. Orioli and L. Sacconi, J. Am. Chem. Soc., 88, 277 (1966).
(24) T. P. Cheesman, D. Hall, and T. N. Waters, J. Chem. Soc. A, 685 (1966).
(25) (a) H. P. Fritz, B. M. Golla, and H. J. Keller, Z. Naturforsch, Teil B, 21, 1015 (1960); (b) ibid., 23, 876 (1968).
(26) B. R. McGarvey, Transition Met. Chem., 3, 90 (1960), and references therein.
(27) S. Lindskog, L. E. Henderson, K. K. Kannan, A. Liljas, P. O. Nyman, and B. Strandberg in "The Enzymes", Vol. 5, P. D. Boyer, Ed., Academic Press, New York, N. Y., 1971, p 587.
(28) J. Bjerrum, C. J. Ballhausen, and C. K. Jorgensen, Acta Chem. Scand., 8, 1275 (1954).
(29) T. A. Vanngârd in "Biological Applications of Electron Spin Resonance", H. M. Swartz, J. R. Bolton, and D. C. Borg, Ed., Wiley, New York, N.Y., 1972, and references therein.
(30) D. R. McMillin, R. A. Holwerda, and H. B. Gray, Proc. Nat. Acad. Sci. U.S.A., 71, 1339 (1974), and references therein.
(31) F. A. Quiocho and W. N. Lipscomb, Adv. Protein Chem., 25, 1 (1971).

